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Abstract

As the costs of wastewater disposal increase more emphasis is being placed upon the recovery and recycling of valuable chemicals
contained within these streams. In this article, we review three separations technologies that facilitate such recycling. Solvent extraction
is an established technique for recovery of heavy metals and other pollutants and is most useful in large and medium scale operations
when solute concentrations are high. Membrane technology is a more recent development that can be used in conjunction with extraction
solvents to extend the range of conditions under which such processes are viable. Finally, adsorption and ion-exchange processes provide
the means for extracting valuable contaminants when the concentrations of such so lutes are low. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Companies are increasingly being forced both by regu-
latory and cost pressures to reduce the amount and envi-
ronmental sensitivity of the liquid waste they produce. This
has lead to a focus on their ability to clean up this waste
and return or recycle a significant proportion. The use of
recycled waste streams often also has the additional cost
benefit of reducing the raw material requirement, thus again
reducing costs. A ‘closed cycle’ process is the ultimate
objective, whereby all waste streams are recycled and the
only output from the process is saleable product.

Wastewater streams have traditionally been treated by a
combination of physico-chemical processes such as floccu-
lation, precipitation and filtration, and biological processes
such as activated sludge and biofilm processes. Such treat-
ments are usually effective in reducing organic pollutants to
a level suitable for disposal into public sewerage or natural
waterways. However, they often fail to reduce the concen-
tration of heavy metals below permissible limits. Further,
these technologies usually do not provide the selectivity
necessary to create valuable product streams suitable for
recycle or re-use, and as a consequence the by-product
sludge can itself become a disposal problem.

Separation processes provide the means for approaching
these latter objectives. The wastewater stream is fraction-
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ated into two or more liquid phases that are either process
recyclable, saleable or waste. In this paper, we focus on
three technologies that can achieve such fractionation.
Solvent extraction is an established process for reducing
solute concentrations in aqueous streams. Membrane-based
processes extend and improve this technology, making it
accessible over a wider range of process conditions. Finally,
adsorption and ion-exchange technology finds application
at lower solute concentrations, when the solvent-based pro-
cesses become less attractive. Each of these technologies is
discussed in more detail below.

2. Solvent extraction

The most established separations technology for waste-
water recycling is solvent extraction. This process is
principally used for large-scale operations where the con-
centrations of contaminants are high (see Fig. 1). Solvents
are becoming increasingly selective, allowing specific
molecules to be separated from the aqueous phase while
others are retained. However, the capital outlay for such
equipment can be expensive, large volumes of organic ex-
tractants are required and performance is often limited by
hydrodynamic constraints such as flooding and entrainment.
There is also the potential for cross-contamination of the
aqueous stream with the organic solution.

A major commercial application of this technology has
been in the selective removal of heavy metal ions from
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Fig. 1. Solute concentration ranges for separation technologies.

wastewater streams. A water insoluble metal-complexing
agent in a non-polar organic solvent is contacted with the
waste stream and the metal ions transfer into the organic
phase. This loaded organic phase is then further contacted
with a second aqueous strip phase. The metal ions transfer
back into this aqueous stripping solution which is returned
as recycle to the industrial process.

Heavy metals can be present in wastewater as either
cations or anions. Cations are usually extracted into an orga-
nic diluent by acidic or chelating extractants. Thus, for
example, aromatic oxime molecules, known commercially
as LIX84, LIX984N, LIX860 (Cognis) and Acorga P50
(Avecia) extractants may be used to remove Cu(II) or Au(I)
[1–7] whereas organophosphates such as 2-ethylhexylphos-
phonic acid mono-ethylhexyl ester (HEH(EHP)), mono(2-
ethylhexyl) phosphoric acid (H2MEHP), di(2-ethylhexyl)
phosphoric acid (D2EHPA) or di(2-ethylhexyl) di thio
phosphoric acid (DTPA) have been used to remove Pb, Cd,
Zn(II), Ni, Co, Cr(III), Ag(I) and rare earth metal species
[7–13].

Metal anions can be extracted by ion-pair formation with
long chain alkyl amines in an organic diluent, as long as
salts or acids are present in the aqueous feed [14]. Suitable
metal-complexing agents include tri-n-octylamine (TOA) for
the removal of Cr(VI) and Hg(II) [1,5] and methyl tricapry-
lyl ammonium choride (Aliquat 336) for Cr(VI) removal
[15–18].

For wastewater with low concentrations of metal ions,
such technology is limited by the need for high aqueous
to organic phase ratios. This leads to high organic losses
through entrainment in the aqueous phase. For mixer-settler

units, such entrainment is typically in the range of 100–
200 ppm, while in column operation this can be reduced to
10–50 ppm depending on the system. This presents a signif-
icant cost to the process and the contamination of the aque-
ous stream with organics can also cause problems. At high
phase ratios, in excess of 20:1, as used in some of these pro-
cesses, the performance of column contractors is reduced
because of increased axial dispersion, resulting in larger and
more expensive equipment.

Other instances where solvent extraction processes can be
applied to wastewater treatment include the use of a tertiary
amine, tris(2-ethylhexyl) amine (TEHA) or a phosphine ox-
ide mixture (CYANEX 923) for the recovery of mineral acids
from hydrometallurgical process waste streams [19–22]. The
recovery of acetic acid and furfural from sulfite wood pulp-
ing waste liquors, using trioctyphosphine oxide (TOPO) has
also been commercialised [23].

3. Membrane technology

A membrane is a semi-permeable barrier through which
only selected chemical species may diffuse. Ho and Sirkar
[24] provide a good overview of membrane processes.

Historically, membrane technology has had wide appli-
cation in wastewater treatment and desalination through
reverse osmosis. In this process, a pressure difference across
a membrane is used to overcome the osmotic pressure
gradient. The smaller water molecules are literally pushed
through the semi-permeable membrane while the larger so-
lute species retained. Cellulose acetate membranes are the
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most common, used in either a spiral wound, hollow fibre,
tubular or plate-and-frame configuration.

Nanofiltration is an emerging technology that combines
such pressure filtration with the use of a negatively charged
membrane. The more negatively charged multivalent anions
and higher molecular weight organics are retained while
monovalent salts pass through the membrane. Such an ap-
proach has been applied to the recovery and re-use of dairy
[25,26], tanning [27,28], sugar [29,30] and textile [31–33]
industry effluents. Fouling and energy costs remain the
major barrier to large-scale application of this technology.

With both reverse osmosis and nano-filtration, the
membrane operates primarily through size exclusion and
so the selectivity for specific metal ions is limited. Much
greater selectivity in wastewater treatment can be obtained
by combining the physically selective permeability of mem-
branes with the chemically selective separation provided by
the solvent extraction process. In this instance, a membrane
is placed between a waste stream and a suitable solvent, and
mass transfer of selected chemical species occurs across
this barrier.

3.1. Emulsion liquid membranes

The concept of a permeable barrier for use in solvent
extraction was first proposed by Li [34] in the 1960s in the
form of an emulsion liquid membrane (ELM). Ho and Li
[35] provide a good review of this technology.

An emulsion liquid membrane is formed by first en-
capsulating an aqueous ‘receiving’ or strip phase within a
hydrophobic membrane liquid. This emulsion is then fur-
ther dispersed within the continuous aqueous feed phase
(see Fig. 2). The resulting system is thus a water/oil/water
double emulsion. Oil/water/oil systems are also possible.

Fig. 2. Schematic diagram of an emulsion liquid membrane (developed
from Cahn and Li [39]).

Fig. 3. Mechanism for facilitated transport of Cr(VI) and H+ using a
tertiary amine carrier (see Youn et al. [127]).

Mass transfer occurs between the outer continuous phase
and the internal encapsulated phase. Once mass transfer is
complete, settling is used to separate out the external phase,
followed by breakage of the internal emulsion system. Op-
eration can be completed within mixer-settler type units or
in continuous countercurrent columns [36–39].

As well as reducing the complexity of the solvent ex-
traction process, a liquid membrane can be used to improve
both the mass transfer rate and selectivity through either
facilitated or coupled transport. With facilitated transport a
carrier molecule binds to the diffusing species on one side
of the membrane, carries it across to the other side and then,
owing to the alternate chemical environment, releases it
(see Fig. 3). Conversely, coupled transport allows a species
to be pumped ‘uphill’ against its own concentration gradi-
ent as a consequence of an existing concentration gradient
of a second species. Such a process is illustrated in Fig. 4
for the “uphill” transport of copper ions. These transport
mechanisms vastly improve the mass transfer flux that can

Fig. 4. Mechanism for coupled transport of copper through a liquid
membrane.
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be achieved in a liquid membrane and allow extraction to
proceed to solute levels that would be otherwise impossible
to achieve by equilibrium limited processes.

A further advantage of ELM processes is the creation of
very large surface area to volume ratios. Large interfacial
areas can be achieved in units that occupy significantly less
floor space and cost significantly less than the traditional
solvent extraction columns. This advantage has lead to the
commercialisation of this technology for the extraction from
wastewater of phenols [39,40], cyanide [35] and zinc [41].

Pilot scale studies have also been conducted on the use
of such technology for the removal of heavy metal cations
such as zinc, cadmium, chromium, copper, lead, palladium
and mercury from wastewater [11,12,16,36,42–52]. Re-
search has been conducted into the removal of alkali metal
cations such as Na+, K+, Li+ and Cs+ [52–55], radioactive
fission products, such as Cs-137, Sr-90, Ce-139 and Eu-152
[56] and the removal of anions, such as chlorides, sulfate,
selenium, phosphate and chromate [47,52,54,57]. Wang and
Bunge [58] and Terry et al. [59] consider the simultane-
ous extraction of organic acids and phenols whereas Baird
et al. [60] consider multi-solute extraction of amines from
wastewaters.

The extraction of ammonia from wastewater has been
given considerable attention [61–71]. While such an ELM
process has been found to be technically feasible, it is
not usually economically advantageous, as the ammonia is
recovered as an inexpensive ammonium salt rather than the
more valuable hydroxide solution NH4OH [24]. However,
a pilot plant of 4 tonne/day capacity using rotating disc
columns has recently been installed in China to reduce am-
monia levels from 0.8 to 1.5 g/l in a metal production plant
[72].

ELMs provide efficient mass transfer in small and medium
size applications, particularly when feed concentrations are
fairly low (see Fig. 1). However, issues of emulsion stability
and membrane leakage have limited their commercial po-
tential. The thin membranes are prone to leakage or rupture
and the inner phase can suffer from swelling instability.
Current research has been directed at increasing emulsion
stability without significantly reducing the extraction rate,
for example, through the use of bi-functional surfactants
which act as both emulsifiers and extractants [73]. Long

Fig. 6. Schematic of a parallel flow microporous hollow fibre membrane module.

Fig. 5. Schematic of a supported liquid membrane.

chain polymers can also be added to the membrane phase
to impart elasticity to the membrane [74]. The extent of
elasticity is a strong function of temperature and the sta-
bility can thus be reversed for de-emulsification following
extraction through simple heating.

3.2. Supported liquid membranes

An alternate approach to the problems of emulsion stabil-
ity has been to immobilise the organic liquid phase within a
porous structure [75–77] (see Fig. 5). This solvent is placed
in the pores of a microporous membrane material prior to
service by a soaking procedure. The extraction and stripping
operations then proceed simultaneously by passing the feed
and the stripping solution across either side of this mem-
brane. Again, facilitated or coupled transport can be used to
aid selectivity.

These supported liquid membranes (SLMs) are usually
manufactured as a series of small diameter microporous
hollow membrane fibres (MHF), typically 240 �m in inter-
nal diameter (see Gabelman and Hwang [78]). The solvent
soaked fibres are bundled together into a module arrange-
ment which, while much smaller in size, is not dissimilar in
design to the traditional shell and tube heat exchanger (see
Fig. 6). The feed and strip solutions then pass respectively
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through either the shell or lumen sides of the bundle. Sup-
ported liquid membranes can also be prepared in a flat sheet
arrangement (FS-SLMs).

The SLM technique has received much attention in the
literature [7,13,15,79–86]. In particular, the possibility of
utilising such technology for the treatment of low level
radioactive wastewater with crown ether or calix-crown
extractants has been extensively studied [87–95]. Such an
approach has the advantage of self-containment and limits
the amount of the expensive extractant that is required.

However, while often studied, few industrial applications
of SLMs have been successfully implemented. Commodore
Separation Technologies installed such technology at the
Port of Baltimore in 1998 for the removal of 500–1000 ppm
of Cr(VI) from groundwater. The effluent water was to con-
tain less than 0.05 ppm Cr(VI), suitable for direct discharge
into Chesapeake Bay [96]. However, it appears that environ-
mental standards could not be attained and the equipment
has now been removed [97].

The lack of commercial success lies primarily with the
lack of long term stability of the membrane [95,98,99]. The
organic liquid in the membrane gradually dissolves into
either of the contacting phases, or conversely, water enters
the membrane phase, progressively wetting the support
pores [100]. Research has been directed at improving this
stability through alternate membrane materials [91–103],
configurations [104] and operating conditions [105,106],
re-impregnation techniques [107,108], coated SLMs
[109,110] and gelation of SLMs [111–114]. Kilambi et al.
[95] have recently patented an approach whereby stability
is enhanced through control of the dielectric constant of the
membrane liquid.

3.3. Other membrane designs

As problems with liquid membrane stability remain un-
resolved, attention has turned in recent years to alternative
membrane designs. In hollow fibre containing liquid mem-
branes (HFCLMs) [1,115–119] two sets of hollow fibres are
packed together into the shell side of a single microporous
hollow fibre permeator. The organic phase is contained in
the spaces between these fibres (shell side). The aqueous
feed solution is then passed through the lumen of one set
of fibres while the aqueous strip solution is passed through
the lumen of the other set. Each aqueous–organic phase
interface is immobilised at the pore-mouths of the respec-
tive fibre by the hydrophobic or hydrophilic nature of the
membrane material and by the maintenance of the correct
phase pressure conditions. The organic liquid membrane
pressure is set independently by the membrane liquid reser-
voir, which automatically replaces any membrane liquid
lost to the feed and strip solutions.

This configuration enhances the area available for mass
transfer per unit volume compared with traditional solvent
extraction equipment and can reduce the potential for
organic phase entrainment significantly. It does however,

increase the diffusional resistance because of the need for
the solutes to diffuse through a stationary organic phase.
Circulating the organic phase through the permeator shell
side to enhance turbulence can reduce this resistance. Recent
studies [120] show that this gives identical mass transfer per-
formance to the simpler MHF permeators described below.

HFCLM membranes have been considered for the extrac-
tion of both organic pollutants such as phenol [115,116] and
heavy metals such as Cu(II), Cr(VI) and Au(I) [117–119].

Wiencek and co-workers consider an alternative design
for copper extraction whereby an emulsion liquid membrane
is contained within a hollow fibre contactor [43,121]. The
aqueous wastewater feed is placed on the shell side of the
contactor, while the solvent/stripping phase emulsion flows
through the lumen. They claim that such an arrangement
allows for simultaneous extraction and stripping without
the emulsion stability problems of ELM technology. The
absence of high shear rates minimises leakage of the inter-
nal phase and the physical separation of the two aqueous
phases reduces emulsion swelling rates. They find that good
extraction can be accomplished even without the use of sur-
factant, leading to the possibility of substantially reduced
de-emulsification costs.

In the simplest case of membrane-based solvent extrac-
tion, two separate MHF permeators are used for the respec-
tive extraction and stripping operations. Such hollow fibre
membrane units have been used for experimental and pilot
scale studies on the extraction of metals such as gold, cop-
per, chromium, iron, zinc, molybdenum and actinades from
aqueous waste streams [5,79,120,122–126]. The use of MHF
technology for the separation of dilute electroplating rinse
waters into a reusable rinse water and recyclable plating
chemicals is identified as a particularly promising applica-
tion [127,128]. For example, Ortiz and co-workers [129,130]
have shown that the Cr(VI) concentration in the wastewaters
from a galvanic plating process can be reduced from 50 to
1 mg/l in a pilot plant with a capacity of 250 l/h. Similarly,
several authors report the extraction of organic pollutants
[131–135]. Zander et al. [136,137] use a gas-filled mem-
brane in contact with a stripping oil as an effective means
of removing volatile organic contaminants from wastewater.

MHF permeators provide large interfacial areas per unit
volume (up to 6000 m2/m3 [78]). Such membranes are also
better able to handle particulates, and liquids of comparable
density difference. As the two phases do not require mix-
ing, the hydrodynamic problems of flooding and entrain-
ment inherent in traditional solvent extraction are avoided.
For example, as already discussed, conventional dispersive
extractors are particularly inefficient at high aqueous to or-
ganic phase ratios. Seibert and Fair [138] show that under
phase ratios of 40:1 to 80:1 extractor height can be reduced
by a factor of 10 if a membrane contactor is used. Further,
such systems are easier to operate, requiring less operator
input than the traditional solvent extraction columns. They
are thus most suitable for smaller installations where capital
and labour costs must be minimised.
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The major disadvantage of these membranes is that they
have a limited lifetime before membrane fouling or failure
of adhesive bonds necessitates replacement. The cost of pe-
riodic replacement must thus be included in any analysis of
their economic viability. Like heat exchangers, their perfor-
mance can also be limited by pressure drop constraints and
by shell side bypassing of the contacting fluid.

4. Ion-exchange and adsorption processes

At low solute feed concentrations, the use of solvent ex-
traction or solvent-based membrane processes lose their ad-
vantage. Often under these conditions, the loss of solvent
into the aqueous wastewater phase through solubility or en-
trainment is greater than the quantity of solute recovered. In
this instance, an alternative technology is required.

The use of a solid matrix for adsorption and ion-exchange
of contaminants provides such an alternative. The volume of
adsorbent material required increases proportionately with
the solute load, so that at higher solute concentrations, equip-
ment size makes such processes economically unfeasible.
Applications are typically limited to levels of contaminants
in the ppm range (see Fig. 1).

Activated carbon is the most widely used adsorbent for
organic impurities in wastewater. Its non-polar surface, and
low cost has made it the adsorbent of choice for of a range
of pollutants such as aromatics and pesticides. However, as
it is non-selective, common innocuous organics, typically

Table 1
Maximum uptake of heavy metals on selected sorbents recent experimental results

Sorbent origon Sorbent Absorbed metal uptake (mmol/g) Reference

U Cu(II) Pb(II)

Fungi Rhizopus arrihizus 0.68 [155]
Aspergillus niger 0.15 [155]
Pre-treated Aspergillus niger 3.9 [172]
Pre-treated Penicillium chrysogenum 4.4 [172]
Pre-treated Micrococcus luteus 3.8 [172]

Marine algae Sargassum fiuitans 2.4 0.80 [168,171]
Sargassum vulgare 0.93 [171]
Sargassum natans 1.22 [157]
Ascophyllum nodosum 1.31 [157]
Pre-treated Durvillaea potatorum 1.30 1.55 [165]
Pre-treated Ecklonia radiata 1.11 1.26 [165]

Yeast Saccharomyces cervisae 0.45 [155]

Cattle bones Bone char 0.75 [176]

Zeolite 13X zeolite 0.70 [147]
Australian zeolite 0.08 [165]

Chitin Chitosan 0.33 0.06 [158]

Rice waste Quatemized rice husk 1.3 1.6 [174]

Pulp mill waste Ellagic acid extract 2.7–3.1 [178]

Ion-exchange Duolite GT-73 1.37 [157]

Resin Amberlite IR-120 2.14 [157]

present at much higher concentrations than more trouble-
some hazardous pollutants, may interfere with the removal
of the hazardous compounds. Tailored bentonite clays have
been trialled as a more selective alternative [139].

Synthetic ion-exchange resins have long been used in
commercial scale applications for the softening or dem-
ineralisation of water. Again, while effective in reducing
ionic contaminant levels to low levels, such resins have
traditionally suffered from a lack of selectivity. Research
has therefore been directed towards improving this selectiv-
ity. Experimental and pilot scale research has targeted the
use of new ion-exchange resins and zeolite materials for
the selective removal of specific heavy metal cations from
wastewater [140–147] and the use of clinoptilolite, another
natural zeolite, for the removal of the soluble ammonium
content [148–150]. Research is active in the field of radioac-
tive waste stream cleanup [151–153] while Wasay et al.
[154] have used impregnated alumina to remove a selection
of anions from industrial wastewaters.

4.1. Biosorption

Biosorption is an emerging technology that also attempts
to overcome the selectivity disadvantage of adsorption pro-
cesses [155–157]. In this instance, biological materials, such
as chitosan [158–161], marine algae or alginates [161–171],
fungi [157] or bacterial biomass [167,170,172] are used
as a chelating ion-exchange medium. These biopolymers
and their derivatives contain a variety of functional groups,
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which can chelate ionic species of a specific size and
charge. Such biomass is thus often much more selective
than traditional ion-exchange resins and can reduce heavy
metal ion concentrations to ppb levels. The biomass can be
immobilised on to an inert framework in order to reduce its
fragility under industrial conditions [166,170,173]. A selec-
tion of recent experimental results utilising such materials
is provided in Table 1.

The biological material used for these systems is cheap
and readily available. Indeed, in some instances it may be
possible to recycle a material that is a waste product in itself
for use as a biosorption medium [172,174–178]. This makes
the use of biosorbents extremely cost-effective.

4.2. Hybrid membrane systems

Other researchers overcome the lack of selectivity inher-
ent in adsorption technology by combining ion-exchange
resins with alternate separation processes.

Thus, for example, Draye et al. [91] recommend that
strontium be selectively extracted from acidic nuclear waste
streams using solvent extraction and then concentrated onto
an ion-exchange resin. The overall process reduces the vol-
ume of material containing Sr by a factor of 5000 and fixes
the soluble species onto an organic incinerable material.

Komatsu et al. [179] propose a combined ion-exchange/
solvent extraction system to separate a mixture of alkaline
earth metal ions. An organic phase containing 2-thenoyltri-
fluoroacetone (TTA) and TOPO is added to an ion-exchange
system using dihydrogen tetratitranate hydrate. The selec-
tivity of the former solvent is in favour of the smaller metal
ions, i.e. Mg2+ > Ca2+ > Sr2+ > Ba2+ whereas for the
latter ion-exchange substrate selectivity is reversed, with the
larger ions sorbing. By combining the two systems a quan-
titative separation of Ca2+ and Sr2+ can be achieved.

Similarly, Wodzki et al. [180] sandwich an organic phase
acting as a bulk liquid membrane (BLM) between two
ion-exchange polymer membranes. This system is used to
extract Zn(II) from wastewaters in an ‘uphill’ direction,
using coupled transport. Kedem and Bromberg [181] and
Isono et al. [182] also describe processes that combine
solvent extraction with ion-exchange membranes.

5. Conclusions

In this paper, we have discussed three inter-related tech-
nologies capable of extracting valuable product streams from
wastewater.

Solvent extraction is a well-established process which is
economically viable when both solute concentrations and
wastewater flowrates are high. It finds particular application
to the recovery of metallic species from industrial waste-
water. However, as a process it becomes uneconomic when
contaminant concentrations are low (<0.5 g/l). Further, tra-
ditional solvent extraction columns are difficult to operate

as they are prone to flooding and entrainment, particularly
at the high phase ratios required for such applications.

Membrane technology is a more recent development that
is capable of extending the conditions under which solvent-
based processes are economically viable. In particular, ELM
technology has been used in several commercial installations
to treat more dilute waste solutions (1–1500 ppm). In this
instance, the mass transfer rate and overall selectivity of
mass transfer is enhanced through the use of facilitated or
coupled transport.

SLMs have the potential to combine the enhanced mass
transfer provided by emulsion liquid membranes with the
utility of MHF permeators. Further, such units can also be
used to limit the amount of organic phase that is required,
making the use of expensive extractants more viable. How-
ever, as an emerging technology they have had their own
operational difficulties, chiefly arising from the instability
of the liquid membrane itself.

HFCLMs overcome membrane instability issues by plac-
ing two sets of fibres in a solvent filled permeator. However,
large-scale studies of these systems are still limited.

Simpler MHF membrane-based processes are useful in
situations where the scale of operation is too small to war-
rant the capital outlay necessary for a dispersive solvent
extraction column. These permeators provide very high
mass transfer areas per unit volume and eliminate many of
the problems associated with two phase mixtures, such as
flooding and entrainment. In turn, this makes them easier
to operate and thus more suitable when skilled supervision
is unavailable. However, the permeators have only a limited
life and periodic replacement must be factored into any
economic analysis of their application.

In ion-exchange and adsorption processes, a solid matrix
replaces the solvent as the medium for mass transfer. This
well-established technology finds its value when solute con-
centrations in the wastewater stream are very low (in the
ppm to ppb range). Recent research in this area has fo-
cused on the use of novel bi-products, often waste materials
in themselves as selective adsorbents for metal ion species.
The main attraction of biosorption is its cost effectiveness.
Research has also focused on the use of hybrid systems to
increase selectivity. These systems combine ion-exchange
membranes with solvent extraction processes.
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